Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey.

نویسندگان

  • H Barbas
  • G J Blatt
چکیده

The sources of ipsilateral projections from the hippocampal formation, the presubiculum, area 29a-c, and parasubiculum to medial, orbital, and lateral prefrontal cortices were studied with retrograde tracers in 27 rhesus monkeys. Labeled neurons within the hippocampal formation (CA1, CA1', prosubiculum, and subiculum) were found rostrally, although some were noted throughout the entire rostrocaudal extent of the hippocampal formation. Most labeled neurons in the hippocampal formation projected to medial prefrontal cortices, followed by orbital areas. In addition, there were differences in the topography of afferent neurons projecting to medial when compared with orbital cortices. Labeled neurons innervating medial cortices were found mainly in the CA1' and CA1 fields rostrally, but originated in the subicular fields caudally. In contrast, labeled neurons which innervated orbital cortices were considerably more focal, emanating from the same relative position within a field throughout the rostrocaudal extent of the hippocampal formation. In marked contrast to the pattern of projection to medial and orbital prefrontal cortices, lateral prefrontal areas received projections from only a few labeled neurons found mostly in the subicular fields. Lateral prefrontal cortices received the most robust projections from the presubiculum and the supracallosal area 29a-c. Orbital, and to a lesser extent medial, prefrontal areas received projections from a smaller but significant number of neurons from the presubiculum and area 29a-c. Only a few labeled neurons were found in the parasubiculum, and most projected to medial prefrontal areas. The results suggest that functionally distinct prefrontal cortices receive projections from different components of the hippocampal region. Medial and orbital prefrontal cortices may have a role in long-term mnemonic processes similar to those associated with the hippocampal formation with which they are linked. Moreover, the preponderance of projection neurons from the hippocampal formation innervating medial when compared with orbital prefrontal areas followed the opposite trend from what we had observed previously for the amygdala (Barbas and De Olmos [1990] (J Comp Neurol 301:1-23). Thus, the hippocampal formation, associated with mnemonic processes, targets predominantly medial prefrontal cortices, whereas the amygdala, associated with emotional aspects of memory, issues robust projections to orbital limbic cortices. Lateral prefrontal cortices receive robust projections from the presubiculum and area 29a-c and sparse projections from the hippocampal formation. These findings are consistent with the idea that the role of lateral prefrontal cortices in memory is distinct from that of either medial or orbital cortices. The results suggest that signals from functionally distinct limbic structures to some extent follow parallel pathways to functionally distinct prefrontal cortices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey.

Prefrontal cortices have been implicated in autonomic function, but their role in this activity is not well understood. Orbital and medial prefrontal cortices receive input from cortical and subcortical structures associated with emotions. Thus, the prefrontal cortex may be an essential link for autonomic responses driven by emotions. Classic studies have demonstrated the existence of projectio...

متن کامل

Pathways for emotions and memory I. Input and output zones linking the anterior thalamic nuclei with prefrontal cortices in the rhesus monkey

The anterior thalamic nuclei occupy a central position in pathways associated with emotions and memory [AMA Arch. Neurol. Psychiatry 38 (1937) 725]. The goal of this study was to determine the anatomic interaction of the anterior nuclei with distinct prefrontal cortices that have been implicated in emotion and specific aspects of memory. To address this issue, we investigated the relationship o...

متن کامل

Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates.

Prefrontal pathways exert diverse effects in widespread cortical areas, issuing projections both to the middle layers and to layer I, which are anatomically and functionally distinct. Here we addressed the still unanswered question of whether cortical pathways that terminate in different layers are distinct at the synaptic level. We addressed this issue using as a model system the robust and fu...

متن کامل

Cortical connections of the occipital lobe in the rhesus monkey: interconnections between areas 17, 18, 19 and the superior temporal sulcus.

Using both anterograde and retrograde tracing techniques, the present report investigates the cortical connections of the lateral, median and ventral portions of areas 17 and 18 in the rhesus monkey. All parts of area 17 are found to send topographically organized connections to a strip of prestriate cortex which closely corresponds to area OB of Bonin and Bailey or area 18 of Vogt and Vogt. St...

متن کامل

Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey.

The superior sector of Brodmann area 6 (dorsal premotor cortex, PMd) of the macaque monkey consists of a rostral and a caudal architectonic area referred to as F7 and F2, respectively. The aim of this study was to define the origin of prefrontal and agranular cingulate afferents to F7 and F2, in the light of functional and hodological evidence showing that these areas do not appear to be functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hippocampus

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 1995